Novel molecular mechanisms of disease susceptibility in plants -- an FTIR study of Arabidopsis thaliana

نویسندگان

  • Theodore K. Raab
  • John Vogel
  • Shauna Somerville
چکیده

Understanding the molecular basis of plant resistance to fungal diseases will contribute to reducing world-wide crop losses. One model organism for studying disease resistance is Arabidopsis thaliana, a small member of the mustard family for which complete genomic sequence information was publicly released in 2000. Erysiphe cichoracearum, the causative agent for powdery mildew disease in a wide range of plants, colonizes and eventually overtakes a host if three events occur. Erysiphe spores are carried on the wind, and when they land on the aerial portions of a host plant, they must invade an epidermal (outer) cell, and establish a feeding structure to divert plant nutrients. The fungus must "fly under the radar" of the host's defense responses, which would, if fully activated, quickly kill the invading fungus. Finally, since the fungus is not a saprophytic pathogen (cannot survive on dead tissues), it must keep the host's cells alive until its life cycle is complete. Several genetic loci conferring powdery mildew resistance (pmr1-4) have previously been described by Vogel and Somerville [1]. While many disease-resistance pathways involve sensing of salicylic acid and/or jasmonic acid, several genes that operate independently of these hypersensitive responses have been identified; the mutant described below represents a novel form of disease resistance based upon loss of a gene required during a compatible interaction, rather than the action of known host defense pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

مشکلات روش‌های موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا

Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

The impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters

Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002